skip to main content


Search for: All records

Creators/Authors contains: "Moon, Sungmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    There is overwhelming evidence that evidence-based teaching improves student performance; however, traditional lecture predominates in STEM courses. To provide support as faculty transform their lecture-based classrooms with evidence-based teaching practices, we created a faculty development program based on best practices, Consortium for the Advancement of Undergraduate STEM Education (CAUSE). CAUSE paired exploration of evidence-based teaching with support for classroom implementation over two years. Each year for three years, CAUSE recruited cohorts of faculty from seven STEM departments. Faculty met biweekly to discuss evidence-based teaching and receive feedback on their implementation. We used the PORTAAL observation tool to document evidence-based teaching practices (PORTAAL practices) across four randomly chosen class sessions each term. We investigated if the number of PORTAAL practices used or the amount of practices increased during the program.

    Results

    We identified identical or equivalent course offerings taught at least twice by the same faculty member while in CAUSE (n = 42 course pairs). We used a one-way repeated measures within-subjects multivariate analysis to examine the changes in average use of 14 PORTAAL practices between the first and second timepoint. We created heat maps to visualize the difference in number of practices used and changes in level of implementation of each PORTAAL practice. Post-hoc within-subjects effects indicated that three PORTAAL practices were significantly higher and two were lower at timepoint two. Use of prompting prior knowledge and calling on volunteers to give answers decreased, while instructors doubled use of prompting students to explain their logic, and increased use of random call by almost 40% when seeking answers from students. Heat maps indicated increases came both from faculty’s adoption of these practices and increased use, depending on the practice. Overall, faculty used more practices more frequently, which contributed to a 17% increase in time that students were actively engaged in class.

    Conclusions

    Results suggest that participation in a long-term faculty development program can support increased use of evidence-based teaching practices which have been shown to improve student exam performance. Our findings can help prioritize the efforts of future faculty development programs.

     
    more » « less
  2. Carvalho, Paulo F. (Ed.)
    Evidence-based teaching practices are associated with improved student academic performance. However, these practices encompass a wide range of activities and determining which type, intensity or duration of activity is effective at improving student exam performance has been elusive. To address this shortcoming, we used a previously validated classroom observation tool, Practical Observation Rubric to Assess Active Learning (PORTAAL) to measure the presence, intensity, and duration of evidence-based teaching practices in a retrospective study of upper and lower division biology courses. We determined the cognitive challenge of exams by categorizing all exam questions obtained from the courses using Bloom’s Taxonomy of Cognitive Domains. We used structural equation modeling to correlate the PORTAAL practices with exam performance while controlling for cognitive challenge of exams, students’ GPA at start of the term, and students’ demographic factors. Small group activities, randomly calling on students or groups to answer questions, explaining alternative answers, and total time students were thinking, working with others or answering questions had positive correlations with exam performance. On exams at higher Bloom’s levels, students explaining the reasoning underlying their answers, students working alone, and receiving positive feedback from the instructor also correlated with increased exam performance. Our study is the first to demonstrate a correlation between the intensity or duration of evidence-based PORTAAL practices and student exam performance while controlling for Bloom’s level of exams, as well as looking more specifically at which practices correlate with performance on exams at low and high Bloom’s levels. This level of detail will provide valuable insights for faculty as they prioritize changes to their teaching. As we found that multiple PORTAAL practices had a positive association with exam performance, it may be encouraging for instructors to realize that there are many ways to benefit students’ learning by incorporating these evidence-based teaching practices. 
    more » « less
  3. Abstract

    We examined the effects of teacher education on preservice secondary science and mathematics teacher readiness. The construct of teacher readiness consisted of three dimensions: (a) preservice teachers’ understanding of how to implement current standards, (b) their understanding of how to teach multilingual learners (MLs), and (c) their beliefs about their abilities and skills as educators. To determine teacher readiness, a subset of preservice teachers enrolled in six teacher education programs (TEPs) completed a pre‐ and post‐survey. We found that the undergraduate STEM teacher recruitment program was associated with developing preservice teachers’ understanding of standards‐based instruction but was not associated with the other two dimensions of teacher readiness. We also found that the post‐baccalaureate TEPs were effective in developing preservice teachers’ understanding of ML instruction, whereas the experimental baccalaureate program was not. Further, we found that teacher readiness did not predict participants’ performance assessment (edTPA) scores. Findings suggest that teacher educators and curriculum developers involved in undergraduate STEM teacher recruitment programs should better address language, literacy, and ML instruction. Both teacher recruitment and TEPs should consider ways to strengthen teacher efficacy. Finally, teacher educators should carefully consider how their coursework and field experiences help preservice teachers prepare for the edTPA.

     
    more » « less
  4. Abstract

    We investigated beginning secondary science teachers’ understandings of the science and engineering practice of developing and using models. Our study was situated in a scholarship program that served two groups: undergraduate STEM majors interested in teaching, or potential teachers, and graduate students enrolled in a teacher education program to earn their credentials, or preservice teachers. The two groups completed intensive practicum experiences in STEM‐focused academies within two public high schools. We conducted a series of interviews with each participant and used grade‐level competencies outlined in theNext Generation Science Standardsto analyze their understanding of the practice of developing and using models. We found that potential and preservice teachers understood this practice in ways that both aligned and did not align with theNGSSand that their understandings varied across the two groups and the two practicum contexts. In our implications, we recommend that teacher educators recognize and build from the various ways potential and preservice teachers understand this complex practice to improve its implementation in science classrooms. Further, we recommend that a variety of practicum contexts may help beginning teachers develop a greater breadth of understanding about the practice of developing and using models.

     
    more » « less
  5. Abstract

    To prepare preservice secondary science teachers to teach English learners (ELs), teacher education programs must provide sustained coursework and experiences in principles and strategies found effective in supporting ELs’ learning of science. In the context of a teacher education program recognized for its attention to ELs, we investigated seven preservice secondary science teachers’ understanding of academic language and of how to support EL students’ use of academic language. More specifically, over the course of their 13‐month program, we examined changes in (a) preservice teachers’ understanding of the three levels of academic language (i.e., lexical, or vocabulary; syntactic, or sentence; and discursive, or message) and (b) the types of instructional support they reported using at each level (e.g., peer collaboration at the discursive level). We also compared their understanding of academic language and instructional support both to their experienced cooperating teachers’ understanding and to their actual classroom practice. From qualitative analysis of data collected, we found that preservice teachers understood academic language as more than just vocabulary—as spanning lexical, syntactic, and discursive levels—although they reported implementing more types of supports at the lexical and discursive levels than at the syntactic level. We also found that preservice teacher participants’ understanding of academic language and instructional support resonated with that of their cooperating teachers and with their own classroom practice. We close with discussion of ways teacher education programs can deepen and broaden preservice secondary science teachers’ understanding of the role of academic language in ELs’ science learning

     
    more » « less